

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 1065-1070

Tetrahedron Letters

Isomerization of allylic alcohols into saturated carbonyls using phosphorus tribromide $\stackrel{\mbox{\tiny $\%$}}{}$

Shagufta, Ajay Kumar Srivastava and Gautam Panda*

Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226 001, UP, India

Received 31 October 2005; revised 28 November 2005; accepted 8 December 2005 Available online 27 December 2005

Abstract—Allylic alcohols 3–18 and 36 were efficiently isomerized to corresponding saturated carbonyls 19–34 and 37 in excellent yields under mild reaction conditions (5–9 min, 0 °C) using PBr₃. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The isomerization of allylic alcohols to saturated carbonyl compounds¹ is an important reaction in synthetic organic chemistry. Some of the well-known procedures for the transformation of allylic alcohols to saturated carbonyls are: (i) conventional two-step sequential oxidation and reduction reactions; (ii) a one-pot internal redox process mediated by various transition metal catalysts (iron,² rhodium,³ ruthenium,⁴ nickel,⁵ iridium,⁶ cobalt,7 palladium,8 platinum,8 osmium9 and molybdenum¹⁰); (iii) thermolysis of the allylic alcohol at $302-368 \ ^{\circ}C^{11}$ and (iv) a controlled reaction with 2 equiv of *n*-BuLi.¹² A close analysis of all existing methods reveals that none is very practical. The conventional two-step oxidation and reduction procedures are tedious for complex molecules having multiple functional groups. In most cases, the one-pot isomerization requires relatively high quantities of an expensive catalyst leading to low turnover frequencies (TOF), turnover numbers (TON) and hence limits recycling. This coupled with the rather harsh reaction conditions (110-150 °C, 4-48 h, hv, etc.) has limited the use of most transition metal catalysts. On the other hand, heating allylic alcohols at >300 °C is very impractical and very few examples are known, which involve treatment of alcohols with *n*-BuLi to furnish saturated carbonyls.¹³ Furthermore, the isomerization of allylic alcohols using known methods depends largely upon the substitution on the double bond. The

reaction becomes more difficult as the number of substituents increases. A handful of examples are known for the transposition of trisubstituted and conjugated allylic alcohols into saturated carbonyls. Recently, formation of exocyclic olefins through phosphorus tribromide (PBr₃) treatment of allylic alcohols containing substituents with +I inductivity has been reported.¹⁴ In continuation of this work, a new and highly efficient isomerization of allylic alcohols, containing substituents with moderate to good -I inductive effects into saturated carbonyls using PBr₃ is reported in this letter.

Ketone 1 was subjected to PBr₃ to furnish the corresponding bromo derivative 2, which on reaction with *n*-butyllithium and aldehydes (R¹CHO, R¹ = alkyl, aryl, heteroaryl, etc.) at -78 °C furnished a set of allylic alcohols¹⁵ 3–18. On treatment of 3–18 with PBr₃ at 0 °C, the reaction proceeded smoothly and efficiently providing an excellent yield of saturated carbonyls 19–34 (Table 1). Selective isomerization of allylic alcohol 15, having two types of double bond to the saturated carbonyl 31 was also observed (Scheme 1).

The versatility of the methodology for the isomerization of allylic alcohols was further demonstrated by the facile conversion of tris-allyl alcohol **36**, obtained from an *n*-BuLi exchange reaction of **2** and benzene-1,3,5-tricarb-aldehyde **35**, into tris-ketone **37** (73%) (Scheme 2).

From close analysis of structures **19–34**, it is apparent that the isomerization of a diverse range of allylic alcohols obtained from reactions between bromo derivatives and a series of aldehydes was explored. A mechanistic hypothesis for the isomerization of the allylic alcohols

^{*}CDRI Communication No. 6739.

^{*} Corresponding author. Tel.: +91 522 2612411/18; fax: +91 522 2623405; e-mail: gautam.panda@gmail.com

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.12.046

Table 1. Isomerization of allylic alcohols 3–18 to saturated ketones 19–34

Entry	Allyl alcohol	Reaction conditions	Saturated ketone	Physical state, mp (°C)	Yield (%)
a	HO HO HO CH ₃ CH ₃ CH ₃	0 °C, 6 min	OCH3 H3CO 19 CH3 H3CO 19 CH3	White solid, 105 °C	67 ^a
b	H ₃ CO HO HO HO CH ₃ CH ₃	0 °C, 7 min	H ₃ CO H ₃ CO H ₃ CO CH ₃	Light yellow semi solid	65 ^b
с	H ₃ CO HO HO HO CH ₃ CH ₃ CH ₃	0 °C, 6 min	H ₃ CO O H ₃ CO CH ₃ CH ₃	Yellow viscous oil	20°
d	HO HO S CH ₃ H ₃ CO CH ₃	0 °C, 6 min	о Н ₃ CO 22 0 CH ₃	Yellow oil	58 ^d
e	HO HO CH ₃ H ₃ CO 7 O CH ₃	0 °C, 5 min	о н ₃ со 23 о СН ₃	Yellow viscous oil	78
f	HO CI CI CH ₃ CH ₃	0 °C, 6 min	Cl Cl CH ₃ CH ₃ CH ₃	Light yellow semi solid	60
g	HO HO H ₃ CO 9 O CH ₃	0 °C, 6 min	H ₃ CO 25 0 CH ₃	Light yellow solid, 70 °C	82
h	HO H ₃ CO HO CH ₃ CH ₃	0 °C, 7 min	CN CN CH ₃ CH ₃ CH ₃	Light brown semi solid	74
i	HO H ₃ CO H ₁ O CH ₃	0 °C, 5 min	СH ₃ CO 27 0 CH ₃	White crystalline solid, 81 °C	77

Table 1 (continued)

Entry	Allyl alcohol	Reaction conditions	Saturated ketone	Physical state, mp (°C)	Yield (%)
j	H0 H0 H3 CH3 CH3 H3 CH3 H3 CH3 CH3 CH3 CH3 CH	0 °C, 6 min	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	Yellow viscous oil	69
k	H0 H3C0 H3C0 H3C0 H3 CH3	0 °C, 8 min	о Н ₃ со 29 0 СН ₃	Light yellow viscous oil	73
1	H0 H3C0 H3C0 H3C0 H3C0 H3C0 H3 H3C0 H3 H3 H3 H0 H0 H0 H0 H0 H0 H0 H3 H0 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3	0 °C, 8 min	H ₃ CO 30 CH ₃	White crystalline solid, 142 $^{\circ}$ C	75
m	H0 H ₃ CO CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	0 °C, 6 min	СH ₃ H ₃ CO СH ₃ 31	Yellow viscous oil	69
n	H0 CH ₃ H ₃ C0 CH ₃ CH ₃ CH ₃ CH ₃	0 °C, 8 min	СH ₃ H ₃ CO СH ₃ 32	Yellow viscous oil	63
o	HO CH ₃ H ₃ CO CH ₃ CH ₃ T7	0 °C, 9 min		Yellow viscous oil	61
р	HO H ₃ CO CH ₃ 18	0 °C, 7 min		Yellow viscous oil	67

^a Along with exocyclic olefin¹⁴ (15%).

^b Along with exocyclic olefin (19%).

^c Along with exocyclic olefin (56%).

^d Along with exocyclic olefin (18%).

to saturated carbonyls using PBr₃ is shown in Scheme 3. The reaction of allylic alcohols 3-18 and 36 with PBr₃ could proceed through an intermediate 38 with elimination of HBr. The unsymmetrically substituted double bond in 38 is polarized due to the extended conjugation of the oxygen atom with the benzene ring. Addition of HBr onto the double bond of 38 follows Markovnikov's rule to furnish **39**. The H_a proton in **39** is acidic due to the presence of OPBr₂ and R¹ containing substituents with moderate to good –I inductive effects. Thus elimination of H_aBr from **39** furnished **40**. Finally hydrolysis of **40** would give **41**, which could tautomerise to the saturated carbonyls **19–34** and **37** (Scheme 3). The reaction was performed using PBr₃/Et₃N but did not yield any

Scheme 1. Transformation of allylic alcohols 3–18 to saturated carbonyls 19–34 by PBr₃.

characterizable product. This suggests that the trapping of HBr by Et_3N eliminates the HBr required for the isomerization. Treatment of the allylic alcohol **11** with HBr/AcOH, HCl, AcOH and TFA was investigated. While **11** was recovered back after AcOH and TFA treatment, it furnished ketone **27** through very slow conversion in HBr/AcOH. Under HCl conditions, no characterizable product was obtained. This could be due to the fact that the H_a proton adjacent to OPBr₂ in **39** is very acidic and facilitates the elimination of H_aBr from **39** to give carbonyls. Incorporation of deuterium in place of H_a did not yield any deuteriated saturated ketones. Thus, the reaction did not proceed through 1,3-migration of H_a onto the double bond of **3–18** and **36** as in transition metal mediated isomerization.¹

In conclusion, we have reported a new, highly efficient isomerization of abundantly available biologically important^{15a,c} substituted allylic alcohols into their corresponding saturated carbonyls in excellent yields at 0 °C using PBr₃. It comprises only a single, instantaneous (5–9 min) step and hence is superior to known procedures. No highly expensive organometallic was used for this transformation. A remarkably simple route to the symmetric, polycyclic tris-ketone **37**, which is inaccessible by other means, was also accomplished using this methodology. The methodology provides a new dimension for the isomerization of allylic alcohols into saturated carbonyls.

2. Typical procedure for 19-34

To a solution of carbinol **3–18** {0.100 g (1 equiv)} in dry benzene (2.5 mL) at 0 °C was added PBr₃ (1.5 equiv) and the mixture was stirred at room temperature. After completion of reaction, monitored using thin

Scheme 2. Transformation of tris-allylic alcohol 36 to tris-ketone 37.

Scheme 3. Plausible reaction mechanism for the transformation.

layer chromatography (TLC), the reaction mixture was poured into ice-cold water and extracted with ethyl acetate. Column chromatography of the crude product using silica gel (ethyl acetate/hexane) furnished compounds **19–34**.

2.1. (4-Fluorophenyl)-(7-methoxy-2,2-dimethylchroman-4-yl)-methanone 27

IR (KBr): 2975, 1683, 1617, 1596, 1504, 1161, 845 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 7.90–7.83 (m, 2H, Ar*H*), 7.06 (t, 2H, Ar*H*), 6.68 (d, 1H, *J* = 8.7, Ar*H*), 6.34–6.29 (m, 2H, Ar*H*), 4.56–4.51 (m, 1H, ArC*H*), 3.66 (s, 3H, OC*H*₃), 2.06–1.96 (m, 2H, ArCHC*H*₂), 1.35 {s, 3H, C(C*H*₃)₂}, 1.26 {s, 3H, C(C*H*₃)₂}; ¹³C NMR (50 MHz, CDCl₃): 200.1, 160.2, 155.1, 133.1, 132.1, 129.8, 116.4, 116.0, 111.7, 108.1, 102.8, 74.8, 55.6, 42.7, 37.9, 29.8, 24.8. MS (FAB): *m/z* (%): 315 (70, [M⁺+H]), 191 (100, [M⁺-OC₇H₄F]). Anal. Calcd for C₁₉H₁₉FO₃: C, 72.60; H, 6.09. Found: C, 72.63; H, 6.13.

2.2. (7-Methoxy-2,2-dimethylchroman-4-yl)-naphthalen-2-yl-methanone 30

IR (KBr): 2976, 1674, 1593, 1351, 1159, 776 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 8.42–8.37 (m, 1H, Ar*H*), 8.00 (d, 1H, J = 8.2, Ar*H*), 7.92–7.80 (m, 2H, Ar*H*), 7.59–7.46 (m, 3H, Ar*H*), 6.98 (d, 1H, J = 8.2, Ar*H*), 6.49–6.43 (m, 2H, Ar*H*), 4.78–4.69 (m, 1H, ArCH, 3.76 (s, 3H, $-OCH_3$), 2.13–2.03 (m, 2H, ArCHC*H*₂), 1.39 {s, 3H, C(C*H*₃)₂}, 1.30 {s, 3H, C(C*H*₃)₂}; ¹³C NMR (50 MHz, CDCl₃): 205.4, 160.3, 155.2, 136.9, 134.4, 132.9, 130.9, 130.3, 128.8, 128.4, 127.2, 127.0, 126.0, 124.8, 111.7, 108.0, 102.7, 74.5, 55.6, 45.3, 37.6, 29.6, 25.1. MS (FAB): m/z (%): 347 (90, [M⁺+H]), 191 (100, [M⁺ $-COC_{10}H_7$]). Anal. Calcd for C₂₃H₂₂O₃: C, 79.74; H, 6.40. Found: C, 79.77; H, 6.48.

2.3. 1-(7-Methoxy-2,2-dimethylchroman-4-yl)-butan-1one 32

IR (Neat): 2971, 1705, 1618, 1504, 1163, 1128, 758 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 6.79 (d, 1H, J = 8.5, ArH), 6.48–6.38 (m, 2H, ArH), 3.83–3.87 (m, 1H, ArCH), 3.75 (s, 3H, OCH₃), 2.37 (t, 2H, -COCH₂-CH₂CH₃), 1.95 (d, 2H, J = 8.9, ArCHCH₂) 1.65–1.54 (m, 2H, COCH₂CH₂CH₃), 1.54 {s, 3H, C(CH₃)₂}, 1.24 {s, 3H, C(CH₃)₂}, 0.87 (t, 3H, COCH₂CH₂CH₃); ¹³C NMR (50 MHz, CDCl₃): 212.2, 160.4, 155.0, 129.7, 110.8, 108.0, 102.7, 74.3, 55.5, 47.8, 41.5, 36.6, 29.8, 24.5, 17.7, 14.1. MS (FAB): m/z (%): 263 (40, [M⁺+H]), 191 (100, [M⁺-COCH₂CH₂CH₃]). Anal. Calcd for C₁₆H₂₂O₃: C, 73.25; H, 8.45. Found: C, 73.29; H, 8.47.

Acknowledgements

This research project was supported by Department of Science and Technology, New Delhi, India. S. and A.K.S. thank CSIR for providing fellowships. We would also like to thank the referee for his excellent suggestion on this letter.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2005.12.046.

References and notes

- (a) Yanovskaya, L. A.; Shakhidayatov, Kh. *Russ. Chem. Rev.* **1970**, *39*, 859; (b) Van der Drift, R. C.; Bouwman, E.; Drent, E. *J. Organomet. Chem.* **2002**, *650*, 1; (c) Uma, R.; Crevisy, C.; Gree, R. *Chem. Rev.* **2003**, *103*, 27; (d) Trost, B. M. *Science* **1991**, *254*, 1471; (e) Trost, B. M. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 259; (f) Herrmann, W. A. In *Applied Homogeneous Catalysis with Organometallic Compounds*; Cornils, B., Herrmann, W. A., Eds.; VCH: Weinheim, 1996; Vol. 2, p 980.
- (a) Emerson, G. F.; Pettit, R. J. Am. Chem. Soc. 1962, 84, 4591; (b) Cowherd, F. G.; von Rosenberg, J. L. J. Am. Chem. Soc. 1969, 91, 2157; (c) Damico, R.; Logan, T. J. J. Org. Chem. 1967, 32, 2356; (d) Iranpoor, N.; Imanieh, H.; Forbes, E. J. Synth. Commun. 1989, 19, 2955; (e) Cherkaoui, H.; Soufiaoui, M.; Gree, R. Tetrahedron 2001, 57, 2379; (f) Crevisy, C.; Wietrich, M.; Le Boulaire, V.; Uma, R.; Gree, R. Tetrahedron Lett. 2001, 42, 395.
- (a) Strohmeier, W.; Weigelt, L. J. Organomet. Chem. 1975, 86, C17; (b) Bright, A.; Malone, J. F.; Nicholson, J. K.; Powell, J.; Shaw, B. L. J. Chem. Soc., Chem. Commun. 1971, 712; (c) Sasson, Y.; Zoran, A.; Blum, J. J. Mol. Catal. 1981, 11, 293; (d) de Bellefon, C.; Tanchoux, N.; Caravieilhes, S.; Grenouillet, P.; Hessel, V. Angew. Chem., Int. Ed. 2000, 39, 3442; (e) Alper, H.; Hachem, K. J. Org. Chem. 1980, 45, 2269; (f) Tani, K. Pure Appl. Chem. 1985, 57, 1845; (g) Bergens, S.; Bosnich, B. J. Am. Chem. Soc. 1991, 113, 958; (h) Uma, R.; Davies, M. K.; Crevisy, C.; Gree, R. Eur. J. Org. Chem. 2001, 3141; (i) Boons, G. J.; Burton, A.; Isles, S. Chem. Commun. 1996, 141; (j) Sato, S.; Matsuda, I.; Izumi, Y. Tetrahedron Lett. 1984, 25, 769.
- (a) Nicholson, J. K.; Shaw, B. L. Proc. Chem. Soc. 1963, 282; (b) Smadja, W.; Ville, G.; Georgoulis, C. J. Chem. Soc., Chem. Commun. 1980, 594; (c) Krompiec, S.; Suwinski, J.; Grobelny, R. J. Mol. Catal. 1994, 89, 303; (d) Stunnenberg, F.; Niele, F. G. M.; Drent, E. Inorg. Chim. Acta 1994, 222, 225; (e) McGrath, D. V.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1991, 113, 3611; (f) Sasson, Y.; Rempel, G. L. Tetrahedron Lett. 1974, 47, 4133; (g) Zoran, A.; Sasson, Y.; Blum, J. J. Org. Chem. 1981, 46, 255; (h) Trost, B. M.; Kuliawec, R. J. J. Am. Chem. Soc. 1993, 115, 2027; (i) Slugovc, C.; Ruba, E.; Schmid, R.; Kirchner, K. Organometallics 1999, 18, 4230; (j) Langenbahn, M.; Bernauer, K.; Suss-Fink, G. J. Organomet. Chem. 1989, 379, 165; (k) Dedieu, M.; Pascal, J.-Y. J. Mol. Catal. 1980, 9, 59.
- (a) Corain, B. *Gazz. Chim. Ital.* **1972**, *102*, 687; (b) Bricout, H.; Monflier, E.; Carpentier, J. F.; Mortreux, A. *Eur. J. Inor. Chem.* **1998**, 1739; (c) Lochow, C. F.; Miller, R. G. *J. Org. Chem.* **1976**, *41*, 3020.
- (a) Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organomet. Chem. 1977, 141, 205; (b) Chin, C. S.; Lee, B.; Kim, S.; Chun, J. J. Chem. Soc., Dalton Trans. 1991, 443.
- (a) Goetz, R. W.; Orchin, M. J. Am. Chem. Soc. 1963, 85, 1549;
 (b) Falbe, J.; Schulze-Steinen, H.-J.; Korte, F. Chem. Ber. 1965, 98, 886.
- (a) Delaby, R. Compt. Rend. 1926, 182, 140; (b) Hoang-Van, C.; Zegaoui, O. Appl. Catal. A: Gen. 1997, 164, 91;
 (c) Lu, X.; Ji, J.; Ma, D.; Shen, W. J. Org. Chem. 1991, 56,

5774; (d) Clark, H. C.; Kurosawa, H. J. Chem. Soc., Chem. Commun. 1972, 150.

- (a) Deeming, A. J.; Hasso, S. J. Organomet. Chem. 1976, 114, 313; (b) Bianchini, C.; Farnetti, E.; Graziani, M.; Peruzzini, M.; Polo, A. Organometallics 1993, 12, 3753.
- (a) Tatsumi, T.; Hashimoto, K.; Tominaga, H.; Mizuta, Y.; Hata, K.; Hidai, M.; Uchida, Y. J. Organomet. Chem. 1983, 252, 105; (b) Fiaud, J. C.; Aribi-Zouioueche, L. J. Chem. Soc., Chem. Commun. 1986, 390.
- 11. Andrist, A. H.; Slivon, L. E.; Graas, J. E. J. Org. Chem. 1978, 43, 634.
- 12. Dimmel, D. R.; Fu, W. Y.; Gharpure, S. B. J. Org. Chem. 1976, 41, 3092.
- 13. (a) Otsuka, S.; Tani, K. Synthesis **1991**, 665; (b) Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M. C.; Fu, G. C. J. Am.

Chem. Soc. **2000**, *122*, 9870; (c) Tanaka, K.; Fu, G. C. *J. Org. Chem.* **2001**, *66*, 8177; (d) Wiles, J. A.; Lee, C. E.; McDonald, R.; Bergens, S. H. *Organometallics* **1996**, *15*, 3782; (e) Lee, D. Y.; Moon, C. W.; Jun, C. H. *J. Org. Chem.* **2002**, *67*, 3945; (f) Kitamura, M.; Manabe, K.; Noyori, R.; Takaya, H. *Tetrahedron Lett.* **1987**, *28*, 4719.

- Shagufta; Paroi, M. K.; Panda, G. Tetrahedron Lett. 2005, 46, 8849–8852.
- (a) Gabbutt, C. D.; Hartley, D. J.; Hepworth, J. D.; Heron, B. M.; Kanjia, M.; Rahman, M. M. *Tetrahedron* **1994**, *50*, 2507; (b) Shagufta; Raghunandan, R.; Moulik, P. R.; Panda, G. *Tetrahedron Lett.* **2005**, *46*, 5337–5341; (c) Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M. *J. Chem. Soc., Perkin Trans. 1* **1994**, 653.